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Applications of deep learning, a core AI technology, 
are rapidly expanding in recent years. Until now, the 
mainstream use was for the cloud and on-premises 
workstations equipped with a large-scale GPU, but around 
2016, implementation in edge devices and dedicated chips 
began to appear. At present, application is spreading 
to various edge devices such as in-vehicle devices, 
smartphones and embedded IoT devices. However, 
in general, high precision deep learning models are 
diffi cult to implement in edge devices due to the large 
amount of memory required for operation and high power 
consumption.

In response, OKI is researching and developing a 
technology that compresses the model to signifi cantly 
reduce computational resources while maintaining the 
original accuracy (e.g. for image or speech recognition). 
This article introduces the current status and problems of 
the model compression technologies and presents OKI’s 
own unique technology.

Model Compression Technology

Model compression technology is a general term 
for methods that reduce the number of parameters and 
operational complexity while maintaining the accuracy of 
the model. Recent deep learning requires large amounts 
of memory and computing power to execute, therefore 
increasing the need for model compression technology.

Deep learning model in a narrow sense refers to a 
multi-layered neural network with four or more layers and 
has a large number of parameters as coeffi cients for the 
interlayer coupling and bias. Normally, these parameters 
are expressed using 16- to 32-bit fl oating point numbers. 
There are two phases in deep learning, “training” and 
“inference.” “Training” is a process of optimizing parameters 
using large amounts of data, and “inference” is a process 
of fi nding an answer to unknown data utilizing parameters 
optimized through training.

In an execution environment with limited processing 
power such as edge devices, it is common to implement only 
the inference function, which requires less computational 
resources than training. Even with such a measure, it is 
still diffi cult to operate high-precision models on edge 
devices. The reason is that as accuracy of the model 
becomes higher, the required number of parameters and 
operational complexity grows larger. The application of 
model compression technology alleviates those limitations 
making it possible to operate the inference function of high-
precision models at high speeds on edge devices.

Model Compression Technology 
Status and Problems

(1) Types of Model Compression Technologies
Various approaches have been proposed for model 

compression, but they can be largely classifi ed into six 

types. Table 1 shows the types along with the comparison 

Table 1. Types of Model Compression Technologies

Type Description
Reduction 
of Memory 
Usage

Reduction of 
Operational 
Complexity

Ease of 
Combined 
Use

Effect on 
Accuracy

Low-rank Approximation Decomposition and approximation of weight matrix into low-rank matrix Good Fair Good Good

Quantization Reduce bit precision of operation Excellent Fair Good Fair

Distillation Train small-scale models using trained large-scale models Fair Fair Good Fair

Weight Sharing Share weighting coeffi cients across multiple connections Good Fair Fair Good

High Effi cient 
Architecture

Replace heavy convolutional operation with combination of multiple 
light-load convolutional operations

Good Good Good Fair

Pruning Remove low-importance neurons from the model after training Good Good Excellent Excellent
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of effect on memory usage, operational complexity 
(number of sum-product operations), ease of combined 
use, and accuracy. “Memory usage” and “operational 
complexity” indicate the degree to which reduction can be 
expected for each. “Ease of combined use” indicates the 
compatibility of the technology when used together with 
other compression technologies, and “effect on accuracy” 
indicates the degree of reducing the accuracy degradation 
that occurs when the compression technology is applied. 
The details of each method are described below.

 Low rank approximation: Taking advantage of the 
fact that most operations in deep learning can be 
expressed with large matrix operations, compression 
is achieved by mathematically decomposing and 
approximating a large matrix into a small matrix. This 
method is mainly suitable for reducing memory usage.

 Quantization: Compression is achieved by replacing 
parameters with fi xed-points or integers of 8-bits or 
less, but precision is degraded due to rounding errors 
and narrowing of the numeric expression range. In 
particular, it is known that the accuracy is greatly 
degraded when less than 4-bits are used.

 Distillation: In this method, a large trained “teacher” 
model and a small untrained “student” model are 
prepared. Then the student model is trained so as to 
minimize the difference between its output and the 
teacher model’s output. However, since the option for 
student model remains arbitrary and it is diffi cult to 
make an optimal selection, this method tends to be 
inferior compared with other methods in terms of the 

viewpoints listed in Table 1.

 Weight sharing: In this method, models are trained 
by sharing the models’ weighting coeffi cients between 
connections of differing neurons. Memory usage 
can be reduced since one coeffi cient is shared and 
used multiple times. On the other hand, there is little 
reduction in operational complexity.

 High effi cient architecture: In this architecture, the 
convolutional operation of the convolutional neural 
network (CNN), which is the most frequently used 
network architecture in deep learning, is replaced 
with a combination of multiple light-load convolutional 
operations. One example is the parallel combination 
architecture where the same data is input and 
independently subjected to convolutional operation 
and then the results are integrated. Another is the serial 
combination architecture where a multi-dimensional 

convolutional operation is substituted by multiple low-
dimensional convolutional operations and combined in 
series. Although these architectures are effi cient, they 
are not as accurate as the large models.

 Pruning: In this method, after a large model is trained, 
low-importance neurons are removed. The idea is 
similar to human brain cells, which establish cognitive 
ability, but the cells decrease over time. However, even 
if some cells die, it does not affect cognitive ability. The 
idea is technically and actively utilized in this approach. 
Since this method does not signifi cantly change the 
model architecture, it is highly compatible with other 
compression technologies.

Among these methods, “pruning” provides an excellent 
balance between the ease of combined use and the degree 
of effect on accuracy. However, the degree of effect on 
accuracy only becomes advantageous when appropriate 
measures are taken against the problems described in 
the following section. Pruning can be roughly divided into 
two types: neuron-wise and channel-wise methods. In the 
neuron-wise method, pruning is performed based on the 
degree of importance of each neuron, which is the basic unit 
of a neural network. In the channel-wise method, pruning 
is performed based on the degree of importance of each 
fi lter, which is a group of weighting coeffi cients used for 
CNN, or each channel, which is a set of operational results 
thereof. With neuron-wise pruning, it is possible to fi nely 
remove low importance neurons scattered throughout the 
model, and it is easy to achieve a high pruning rate while 
maintaining accuracy. However, in CNN, since the fi lter 
has an architecture consisting of multiple neurons, it is 
necessary to maintain the architecture itself even if some 
of the neurons are removed. This leads to problems such 
as frequent memory access, which makes it diffi cult to 
increase operational effi ciency at the implementation level. 
On the other hand, with channel-wise pruning, the pruning 
is on a fi lter-by-fi lter basis that generates channel data. 
This is a great advantage in terms of both memory usage 
and processing speed.

(2) Problems with Channel-wise Pruning Method
“Channel importance indicator” and “channel pruning 

rate assignment” were two problems that existed with 
conventional channel-wise pruning technologies.

In the fi rst problem, the indicator that measures the 
importance of a channel is calculated independently for 
each layer. With such an indicator, a possibility remains 
that a channel determined to be unimportant in one 
layer may be necessary for another layer. If so, it can be 
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(1) Technology Overview
An overview of the PCAS technology is shown in 

Figure 1. A new neural network model (referred to as 
an attention module) is inserted between the layers 
of the CNN model to be compressed, and training is 
performed only for that module. There is a 1:1 corresponds 
between the number of neurons from the output layer of 
the module and the number of output channels from the 
layer of original network prior to the inserted module. The 
value of each neuron functions as a gate to control the 
propagation amount of the corresponding channel value 
to the next layer. The training in this confi guration is the 
optimization of the parameters constituting the module in 
order to output higher values for neurons corresponding to 
channels that contribute to accuracy. Thus, each neuron 
in the module output layer will indicate the importance of 
the corresponding channel. Once training is completed, 
the module can execute inference to output the optimum 
importance of each data, and the average value can be 
used as the importance of the channel.

Unlike the indicators in conventional technologies1), 2), 3) 
relationship between layers can be considered with the 
channel importance indicator of the PCAS technology. This 
solves the fi rst problem mentioned in the previous section. 
Since training is performed with each module sandwiching 
the original convolutional layer and everything connected 
together, optimization of the channel importance proceeds 
as gate weight while mutually affecting each other. Thus, 
the importance of the channels in each layer is a value 
optimized across all the layers. In this case, a channel 
determined to be unimportant in one layer is likely to be 
unimportant in another, meaning that each importance 
has a property of being less susceptible to each other. 
That is, it is easier to remove unimportant channels from 
the model as whole, and as a result, accuracy degradation 
is reduced.

The channel pruning rate that the PCAS technology 
needs for model compression is one for the entire model, 
not for each layer. This solves the second problem 
mentioned previously. Specifi cally, using the fact that 
different layers can be evaluated on the same basis, the 
channel importance indicator of the PCAS technology 
removes low important channels based on the importance 
of all channels in all layers until the pruning rate of the 
entire model is achieved, thus making it possible to remove 
different number of channels from each layer. Afterwards, 
re-training (fine-tuning) is performed with reduced 
model network to complete compression. Since the 
inserted module is removed after estimating the channel 

expected that the degree of accuracy degradation after 
model compression will increase due to the loss of an 
important channel contributing to accuracy. Referring back 
to conventional technologies, one indicator considered 
that larger the absolute sum of the values constituting 
each fi lter, more important the channel1). Another indicator 
considered a channel to be less important if its pruning 
during inference produces only a small change in the 
calculation result2), 3). However, those indicators are 
calculated using an independent method for each layer. 
Therefore, although good comparison can be made 
within a given layer, when interlayer relation is taken into 
account, the optimum channel is not necessarily selected 
and selection tends to be ineffi cient. Thus, an indicator that 
considers the relationship between all layers is desired.

The second problem is that channel pruning rate must 
be assigned separately for each layer. The pruning rate 
assigned to each layer is left up to the user, but if not 
properly assigned, the accuracy will be greatly lost. The 
reason is that each of the multiple convolutional layers 
constituting the CNN has different sensitivity to pruning1).  
Sensitivity is the degree of effect the channel pruning rate 
has on accuracy. For example, assigning a high pruning rate 
may have a small effect on the accuracy for one layer, but 
assigning an equivalent pruning rate for another layer may 
lead to signifi cant deterioration in accuracy. Therefore, the 
user must select an appropriate pruning rate for each layer 
while taking sensitivity into consideration. However, that 
sensitivity analysis requires trial-and-error and expertise, 
and making an optimal choice is diffi cult. Furthermore, in 
the case of a large-scale model with numerous layers, the 
number of required pruning rate assignments increases 
which then increases the degree of diffi culty dramatically. 
That is, it is desirable to eliminate the process of assigning 
channel pruning rate for each layer and instead assign 
one channel pruning rate for the entire model whereupon 
an optimal pruning rate between layers can be allocated.

PCAS Technology

OKI possesses a unique PCAS (Pruning Channels 
with Attention Statistics) technology that addresses the 
two problems described in the previous section and 
optimally performs channel-wise pruning for CNN models. 
This technology is characterized by its ability to compress 
models in terms of both memory usage and operational 
complexity while maintaining high accuracy. 



4OKI Technical Review 
May 2019/ Issue 233 Vol. 86 No.1

85.0

86.5

88.0

89.5

91.0

92.5

94.0

40

50

60

70

80

90

100

[2] [3] [4] PCAS

Number of 
Parameters

Accuracy

N
u

m
b

er o
f P

aram
eters, 

O
p

eratio
n

s (%
)

A
ccu

racy (%
)

Before 
Pruning

Number of 
Operations

Figure 2. Evaluation Results

Future Prospects

This article introduced PCAS, OKI’s own model 
compression technology. At present, work is proceeding 
for combined use with quantization in order to further 
enhance the model compression effect and improve 
affi nity for hardware implementation. This resource-saving, 
high-precision deep learning model is expected to greatly 
accelerate the spread of AI implementation in the edge 
domain, and development is being advanced to apply this 
technology to OKI’s various AI edge solutions.
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importance, the increase in the operational complexity due 
to this process will not affect inference.

As can be seen from above, PCAS technology makes it 
unnecessary to assign channel pruning rate for each layer, 
the distribution of the channel pruning rate is optimal since 
there is no human intervention, and signifi cant reduction 
in memory usage and operational complexity can be 
expected while maintaining accuracy.
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Figure 1. Conceptual Diagram of PCAS Application

(2) Evaluation Results
The effectiveness of the PCAS technology was 

confi rmed using a 50-layer model and dataset generally 
used in deep learning benchmarks. The results are shown 

in Figure 2. The left axis is the number of parameters and 
operations expressed as ratios with 100% representing the 
state before channel-wise pruning is applied. The right axis 
represents accuracy.

As for the results of PCAS technology, the number 
of parameters and operations were reduced to less than 
half without any deterioration in accuracy from before the 
compression. Furthermore, even under the same conditions 
as the benchmarks of conventional technologies2), 3), 4) 

presented recently at leading international conferences, 
parameter and operation reduction rates were improved 
13 points and 12 points, respectively, confi rming that an 
effi cient model can be realized in terms of both memory 
usage and operational complexity.

These results were obtained based on a single channel 
pruning rate for the entire model. Therefore, it also shows 
that excellent results can be obtained despite the fact that 
neither pruning rate determination nor sensitivity analysis 
was performed for the individual layers.

The names of technologies, conference papers, and institutions included in this report are trademarks or registered trademarks of their respective organization.
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Neuron
Basic unit that make up a neural network. It has a large 
number of inputs and has a structure that performs 
operations such as activation functions on the linear 
combinations of those inputs and weights then outputs the 
results.

Glossary
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