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Failure Prediction for Multi-function Machine 
based on Vibration Data Analysis

Kazuki Kobayashi Masatoshi Sekine

The decrease in the labor force due to the seriously 
declining birthrate and aging population in Japan is 
expanding the need to improve productivity using AI 
(Artificial Intelligence) and IoT (Internet of Things) 
technologies1). In particular, there is great demand for an 
AI technology that can quickly and automatically detect 
an anomaly or event that indicates a failure of a machine.

OKI is working on failure sign detection using a unique 
vibration analysis algorithm that utilizes machine learning, 
and experiments have been conducted with various 
manufacturing machines2). According to OKI’s experience, 
the machines to be subjected to anomaly detection are 
categorized into two types; a monotonically operating 
machine whose vibration pattern does not change often, 
and a machine whose operation varies over time resulting 
in frequent changes in vibration pattern (hereinafter multi-

function machine) (Figure 1). The former machine group 
corresponds to a ball screw of a machine tool or a large 
pump for air conditioning, and the latter corresponds to a 
robot arm or a metal processing apparatus.

Detecting an anomaly in a multi-function machine is 
diffi cult with conventional anomaly detection method due 
to reasons described later. In this article, a new anomaly 
detection method for multi-function machines is introduced.

Figure 1. Machines Targeted for Anomaly 
Detection and Their Vibration Waveforms

(Top: Single function machine, Bottom: Multi-function Machine)
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Diffi culties with Anomaly Detection 
of Multi-function Machines

In a multi-function machine, the normal vibration state 
differs for each operation. Therefore, criteria (decision 
models) to determine the normality/abnormality of the 
machine are prepared for each operating pattern, and 
anomaly detection is performed by switching the models as 
appropriate. The following three problems arise if anomaly 
detection is tried with the conventional method.

  Problem 1
It takes many man-hours to extract and classify 

vibration data. In addition, there is also a problem that the 
annotation (meaning) results for the same data often differ 
when working with multiple persons because the criteria 
for segmentation and classifi cation are not unifi ed.

  Problem 2
When there are many operating patterns, it is a huge 

burden for people to manually select the suitable feature 
values for each operation and prepare the decision model.

  Problem 3
In anomaly detection targeted at manufacturing 

machines, abnormal data may not be collected, and it may 
not be possible to detect an anomaly with a “supervised 
learning,” which requires both normal and abnormal data.

Features of Developed Method

In this section, the features of the new vibration anomaly 
detection method (hereinafter, developed method) that 
solves the three problems presented above are described.

First, to extract the feature values of the vibration 
data, the developed method utilizes deep learning and 
automates the selection of the feature values. At this 
time, using deep learning with a “unsupervised learning” 
enables anomaly detection without requiring abnormal 
data. Additionally, when creating a model for extracting 
feature values from the vibration data (hereinafter, feature 
value extraction model) training data is provided using a 
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method that does not require extraction and classifi cation 
of vibration data for each operating pattern.

Next, based on the extracted vibration feature values 
and the operating pattern information specifi ed from the 
control information, a model for estimating the degree 
of anomaly (hereinafter, anomaly estimation model) is 
created. In the developed method, the operating pattern 
is specifi ed by acquiring the control information of the 
machine, and the decision model is successively switched 
according to the result. Examples of control information 
include control signals of the machine and time elapsed 
after the start of an operation.

Detailed methods for model creation and anomaly 
estimation are described in the following sections.

Variational Autoencoder

In the developed method, it is assumed that supervised 
learning cannot be utilized for abnormal detection, 
therefore “unsupervised” deep learning is to used to 
realize a detection method that does not require abnormal 
data. The variational autoencoder3) (VAE), which is the 
“unsupervised” deep learning method adopted in the 
developed method, will be briefl y explained.

VAE is a type of autoencoder3) (AE) that is trained to 
reproduce input data at its output. In AE, compression 
(encode) is performed by extracting feature values from the 
input data, and the same dimensionality data as the input 
data is output (decode) from compressed feature values. 
At that time, by using the input data as the correct one, it 
becomes possible to train with “unsupervised leaning.”

On the other hand, in VAE, assuming that input data 
follows a probability distribution of average μ and variance 
2, μ and 2 are extracted from the input data, and learning 
is performed so as to output the same data as the input data 

(Figure 2). Thus, by assuming that input data follows the 
probability distribution, it is possible to train a structured, 
continuous latent space as compared with using AE.

Input Data

Encoder Decoder

Compressed Data
Output Data

Figure 2. Variational Autoencoder

Model Creation and Anomaly 
Estimation Methods

In this section, methods for creating feature value 
extraction model and anomaly estimation model, and 
anomaly estimation method are described separately in 
the training and inference stages. Here, it is assumed that 
the elapsed time after the machine starts an operation is 
used as the control information.

(1) Training stage

Figure 3 shows the process at the training stage. 
The vibration data for training is divided into one data for 
creating the feature value extraction model and another 
data for creating the anomaly estimation model. The 
procedure for creating the feature value extraction model 
is as follows.

  Vibration data for creating the feature value 
extraction model is Fourier-transformed to calculate 
a spectrogram. (a-1)

A spectrogram is vibration power information classifi ed 
by time and frequency and obtained by calculating vibration 
power for each frequency in short time intervals. In the 
following, the dimensionality in the time axis direction is T.

   Average value in the time axis direction of the 
spectrogram obtained in a-1 is calculated. (a-2)

   Result obtained in a-2 is input into an untrained 
feature value extraction network and the model is 
trained. (a-3)

Here, the average value in the time axis direction of 
the spectrogram is calculated in step a-2 and provided 
as training data for the feature value extraction network 
in step a-3, thereby making it unnecessary to extract and 
classify each operating pattern in advance. In addition, 
the obtained feature value extraction model is used in the 
inference stage and in creating the anomaly estimation 
model.

The procedure for creating the anomaly estimation 
model is as follows.

  Vibration data for creating the anomaly estimation 
model is Fourier-transformed to calculate a 
spectrogram. (b-1)

  The spectrogram from b-1 is extracted according to 
time t (t=1, 2,..., T) then input into the feature value 
extraction network obtained in a-3. The resulting 

output from the encoder section (μ and 2 in Figure 2) 
is used as the feature value at time t. (b-2)
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Figure 5 is a distribution example of feature values yt 

for a given time t. The fi gure shows that the distribution 
of the feature values may or may not separate due to 
the normality/abnormality of the machine.The reason 
why such differences occur is that in a multi-function 
machine, the operation point changes with time.Therefore, 
it is assumed that even if there is some anomaly in the 
machine, the distribution of the feature values separates 
between normal and abnormal during times when the 
abnormal part is operating, but no difference is seen in 
the distribution during times when the abnormal part is not 
operating. Focusing on this distribution difference between 
normal and abnormal, the degree of anomaly is calculated 
based on the statistical distance between the feature value 
distribution ytk of the normal state and the feature value yt 
of the evaluation data.

Separation of feature value 
distribution due to machine 
normality/abnormality

No separation of feature value 
distribution due to machine 
normality/abnormality

Normal
Abnormal

Normal
Abnormal

Figure 5. Feature Value yt Distribution for Given Time t
(5 Normal/Abnormal Samples Each)

Evaluation Experiment

In order to evaluate the effectiveness of the developed 
method, an experiment was conducted on a machine 
(hereinafter, evaluation machine), which OKI produces, 
containing several motors and mechanical units that 
operate sequentially. The vibration data was acquired by 
installing a vibration sensor with a detection frequency of 
10 Hz to 15 kHz on the surface of the evaluation machine 
and operating the machine continuously for about four 
months. In the experiment, a 30-second sequential 
operation including multiple motions was evaluated as 

one sample. Figure 6 shows the vibration waveform and 
spectrogram for one of the samples.

  The result obtained in b-2 is provided as training 
data for the anomaly estimation model. In the 
case of estimation based on statistical distances, 
the feature value ytk for each time t extracted from 
training vibration data Xk (k = 1, 2,..., K) is used and 
the feature value distribution of the normal state is 
trained for each time t. K is the number of training 
data for the anomaly estimation model. (b-3)

Training

a- 1

a- 2

a- 3

b- 1

b- 2

b- 3

Feature Value Extraction 
Model Creation

Anomaly Estimation 
Model Creation

Calculate Spectrogram Calculate Spectrogram

Calculate Time Axis 
Average of Spectrogram

Extract Feature Values

Train Anomaly 
Estimation ModelTrain Feature Value 

Extraction Neural 
Network

Figure 3. Training Stage Process

(2) Inference stage
Anomaly estimation method using the two models 

obtained in the learning stage will be described (Figure 4).
  Vibration data for the estimation target is Fourier-
transformed to calculate a spectrogram. (c-1)

  The spectrogram from c-1 is input into the feature 
value extraction network from a-3 for each time t to 
obtain feature values yt (t = 1, 2,..., T). (c-2)

  Degree of machine anomaly is estimated using the 
model obtained in c-2. (c-3)

Calculate Spectrogram

Extract Feature Values

Estimate Anomaly

c- 1

c- 2

c- 3

Inference

Figure 4. Inference Stage Process



4OKI Technical Review 
May 2019/ Issue 233 Vol. 86 No.1

third week, the degree of anomaly becomes larger after 
the fourth week.

Then the condition of the evaluation machine was 
investigated, and reason for the results obtained above 
was considered. As can be seen from the waveforms and 

spectrograms in Figure 6, the evaluation machine begins 
to exhibit unusual vibrations 6 to 15 seconds after the 
start of operation. The difference in the amplitude of the 
generated vibration between the fi rst day of experiment 
and four months later during the time section in question is 
apparent. Parts of the machine operating during this time 
section were investigated, and frictional wear was found 
in one of the gears.

Taking these facts into account, it is presumed that the 
degree of anomaly rises during the worn gear’s operation, 
and the anomaly further increased after the fourth week. 
From this, it is considered that the abnormal parts of the 
machine can be identifi ed by matching the operation timing 
of each machinery part with the timing at which the degree 
of anomaly increases. However, it was not possible to 
confi rm how the degree of gear wear relates with vibration 
amplitude and degree of anomaly. Future experiment are 
necessary to match the relationship between anomaly 
estimation and degree of gear wear.
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Figure 7. Experiment Results
(Top: Weekly Anomaly Changes, Bottom: 

Monthly Anomaly Changes)
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Figure 6. Vibration Waveform and Spectrogram 
of a 30-second Sequential Operation

(Top: First day of experiment, Bottom: After four months)

(1) Model Training
In training, 550 vibration data samples (approx. 4.5 

hours’ worth) from the fi rst day of the experiment was 
used as normal data. Five hundred of these samples were 
used to train the feature value extraction model and the 
remaining 50 were used to train the anomaly estimation 
model. The spectrogram was calculated using a window 
width of 0.1 seconds and a shift width of 0.05 seconds.

(2) Experiment Results and Considerations
The degree of anomaly was estimated using the 

developed method with fi ve samples each of vibration data 
acquired weekly from the fi rst four weeks of experiment and 
monthly from the fi rst four months. The average degree of 
anomaly for these fi ve weekly and monthly samples is 

shown in Figure 7. From these results, it can be observed 
that after a week of experiment, the degree of anomaly 
becomes large 6 to 15 seconds after the evaluation 

machine starts operating (indicated by  in Figure 7). In 
addition, although there is no signifi cant difference in the 
degree of anomaly for this time section for the fi rst to the 
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Conclusion

In this article, a new anomaly detection method for multi-
function machine was described. Evaluation experiment 
showed that the proposed method could detect vibration 
change caused by the wear of a certain gear.

In the future, additional evaluation for the proposed 
method will be conducted using other multi-function 
machines. Effort will be made to develop a sophisticated 
anomaly detection method. 
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Spectrogram
Represents the time shift in the frequency distribution of 
vibration power.

Glossary
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