The Virtual Printer Designer

In recent years, there has been growing emphasis on
methodologies aimed at rationalizing design, such as
parallel design or collaborative design methods, and at
Oki Data we have developed and implemented a design
support tool for this purpose — the “printer simulator” (or
“virtual printer”)?.

As well as outputting statistical data indicating the
cache error rate, bus occupancy rate, and so on, the
virtual printer also provides a visualization of the internal
data processing inside the printer, allowing designers to
identify the processor load and the operational state of
the hardware modules. This has been very beneficial in
analyzing the data processing capacity of the printer.

Meanwhile, printer system design has shifted to
systems which improve data processing capacity by
building some of the processes into hardware modules to
achieve higher processing speeds, and running these
hardware modules in parallel with the processor.

However, in order to run the hardware modules in a
virtual printer, the procedures must be converted into
models and encoded so that they function as a
component of the virtual printer. In the past, hardware
modules have been used sparingly and manual encoding
for them has not proved to be a problem. Now, however,
they have come to form a much larger part of printer
design and manual encoding represents an impediment
to the original object of parallel design. Therefore, virtual
printers are currently limited to use in confirming
appropriated design elements, such as tuning firmware
after product design, or changing the processor operator
frequency or cache size.

To resolve this problem, we have built two tools which
cut the manual coding tasks. One of these is a virtual
printer designer, which depicts the combination of the
various components —processor, bus, hardware
modules, etc. — in block diagrams and generates virtual
printer source code, and the other is a logic editor which
creates models of the hardware modules by means of an
input method based on state transition diagrams.

Virtual printer designer

The virtual printer is a type of command level
simulator, which comprises a simulator control unit for
managing the whole simulator, software models for
replacing the hardware components, such as the
processor, bus, logic, etc., and a viewer for depicting the
information relating to each model.?) Conventionally,
after designing the hardware system, in the LSI design
stage, source code written with Verilog is used as a basis
for manual definition of C++ source code. The virtual

74 | OKI Technical Review

April 2003/Issue 194 Vol.70 No.2

Mikio Takashi

printer designer (hereafter, “Designer”’) uses state
transition diagrams and block diagrams to define the
hardware, instead of Verilog source code, and it
generates the C++ source code automatically. (Fig. 1)

The Designer requires the same input tasks as a
normal hardware design process, namely, block
diagrams, memory maps, /O settings, etc., using window
screens.

System /

design Virtual printer
’ \\ designer
Verilog Automatically Logic editor
\generated /

Conventional method

Automatically
generated
LU Manual input
C++
LS C++ | source code
TITITTITTIT

Actual device

Virtual printer

Fig. 1 Flow for creating virtual printer

Fig. 2 shows the window layout in the Designer. As
well as the graphic editing window for positioning and
wiring the various models, there is also a tool selection
window, memory map window, and different logic
definition windows for each model. A “logic” component
is a new hardware module created by the user, and the
logic definition window is used to set the various
parameters for that hardware module. In Fig. 2, the I/O
register definition window, which is an extension of the
logic definition window, is displayed, along with a detailed
settings window. These various windows are described
in more detail below.

I/0 Register settings window

k = -1l
2tva-rs [0 goeE (B coxsme [T
[rrua. toass: e, =

TELA [Pl
RS AT

Lgars [
FEEL v =]

FEA0_WID QUURT
FL:00 D KELCI

T ICX iABE
08 = dcdesle)
I — ki)

sy e[
eRum 5 anrs :

G101 W7 A was o
Lij

o 0 NT_FLAG
=

TR R AT RIITAT]

Ul 07 RL_ENE

TERTLaR (12T |-'

2rdin BN ER

Special Edition on Printing Solutions @

Graphic editing window

|

Theadin Taesy § W= LT D TH A TSN, ColeCuTANE
(el [o)
I AT LT N
LEANER |i (L } W =]
e e TEET— | waeHIt Hige Lo Yy
0031 RC FFFE_FRRE FFE0_BOCO
O = —— - L] HEW
| Ba-t AT II m{ D08 FaA MECOLDOOC 3400000 [ep— ep—
|2vaonsam. [T ueseE
s ff_m_‘i:-__—_‘ WREG | Lo
HTT_FFYT
08|
A o] AR
= e

et e

o

/0 Register definition window

/ 1 B - b

Memory map window Tool selection window

Fig. 2 View of Virtual Printer Designer

(1) Memory map window

A memory map defines the address space of the
processor bus. Generally, a number of hardware
modules are connected to the same bus, and the
processor manages these modules by allocating each
one to a certain range of the address space. In the
virtual printer, a bus model is used for the function of
selecting the models connected to the address space, on
the basis of the address information. When creating the
source code, the settings in this window are generated
automatically by deduction from the bus model classes.

(2) Logic definition window

This window is used to define the number of signal
input and output ports between logic components.
Essentially, the models handled by the virtual printer are
all logic models, apart from the processor and bus. The
concept of logic models is described in more detail in the
section on the logic editor.

As well as the electronic components, the models for
the engine, printing paper, and so on, are also derived on

the basis of these logic models, so that they can be run
as constituent parts of the virtual printer.

The logic editor described below is used to create the
operations inside each logic component.

(3) /O register definition window

A logic component connected to the bus must always
have a register which allows it to be accessed by the
processor. In the 1/O register definition window, besides
the logic definition, settings are also made for the bit
width of the register, the access time, and the number of
logic components.

OKI Technical Review
April 2003/Issue 194 Vol.70 No.2

75

Main window

State transition diagram input window

o COUNT m':iEm-'-m. Drag AT ek T A
a% o®
j;!:-t:t TIMER_INTAUT mbetlon_ time iB[eztiosil] troel:
I_dsl_flas = trust
£ 03_e_Di
B COUNTovaloe & B BELOAD. value?
M e [CTUNTT , wholies_Lins_[B(asliomi?] & H_QUNT vullus ® sl B §
L o =
. i e 1
T"IWJ-.vtc...ma \ ok Cot| B ik TE—SW 0rag THA THIECHIR, wmml
State processing code editing window
Fig. 3 View of Logic Editor
Logic editor Fig. 3 is a view of the logic editor screen, showing a

The virtual printer is made up of the simulator control
unit and the hardware models, but the basic hardware
classes for the processor, bus and logic components are
handled in a synchronized fashion by the simulator
control unit. Since the simulator control units exchanges
signals between these basic hardware classes, a new
hardware model can be operated as a component part of
the virtual printer by deriving it from these basic classes.

The models used for the processor and bus are
nearly all predetermined and are not created by the user.
Therefore, a separate tool is provided for creating new
hardware models on the basis of basic logic classes.
The basic logic classes are already defined with the
minimum levels of code required for them to run in the
virtual printer, and a logic component defined by the user
makes tacit use of this previously defined code. In the
logic editor, the user should only write definitions for the
internal operations of the hardware model, and does not
need to be conscious of the fact that they are models for
a virtual printer. The internal operations of a model are
defined as a state machine, so that the whole device can
be defined in terms of state transition diagrams.

76 | OKI Technical Review

April 2003/Issue 194 Vol.70 No.2

main window where the user can add input pins and
output pins for the exchange of input and output signals
between the hardware models, state transition diagrams
for defining the internal operations, and internal variables,
a state transition diagram input window for inputting state
transition diagrams, and a state processing code editing
windows for defining the internal processing for each
state.

A number of independent state machines can be
defined within a single hardware model. To make internal
definitions for a state machine, a name is registered for
the state machine, and the settings button is then
selected to open a state transition diagram input window,
where the machine can be described graphically. To edit
the processing for the states in the state machine, the
operator can double-click on one of the state labels to
open a state processing code editing window, where the
processing can be described in C++ source code. In
addition, signals representing internal signal states are
prepared as internal variables, similarly to actual
hardware, and when converting to source code, these
can be transferred directly into the objects as class
variables.

In the virtual printer, in order to achieve
synchronization and high-speed operation in the different
models, when one state machine has entered standby,
the printer switches to processing another state machine.
Therefore, it is necessary to record the state at the time
that processing was transferred, so that processing can
be restarted from the previous state, when the next
process comes around. In order to achieve this kind of
system, “input standby” and “process first’ are prepared
as state transition labels.

“Input standby” is a label which halts at the same
state as long as particular conditions are satisfied,
maintaining the current state and diverting processing
from the state machine. This corresponds to a condition
change standby state, dependent on the input pins,
register access, or the like.

“Process first” is way of speeding up operation and
anticipating the simulation time in a way which does not
allow the state machines to affect external operations.
By sending the anticipated time to the simulator control
unit, the state machine is restarted when the simulation
time has reached the recorded time. By adopting this
system, it is possible to reduce clock by clock execution
of the states, thus preventing any decline in simulation
speed.

Creating a virtual printer

A virtual printer is created using this Designer tool, by
linking together the various component blocks arranged
in the graphic editing window. Generic type components,
such as the processor, bus and memory are already
stored in Designer, and these can be selected and
arranged as desired by the user. To add separate
hardware modules, models created using the logic editor
are imported into the Designer.

Via the commands on the “Create virtual printer’
menu, the information specified in the graphic editing
window is converted to C++ source code for the whole
virtual printer, which is embedded with registration code
for the generation of new models, and model grouping
information.

Evaluation

One example of a hardware module was a timer
module we built. The state machine COUNT created in
this timer module has four states. In order to model the
functions of the module, the processing in each of these
states, and the state transition conditions, should be
defined. Since the code defined here is copied directly to
the C++ source code generated by the logic editor, it
obeys C++ syntax and when any one of the state labels
or transition labels is double-clicked, an editing window
opens and the processing details and transition
conditions can be described. The various state and
transition labels can be given names which make them
easier for a human operator to distinguish.

When the hardware module has been created in this
way, it is converted to C++ source code via the Create
Code menu command. The timer module thus generated
is based on code derived from the basic logic classes,
and is able to run directly in the virtual printer.

Special Edition on Printing Solutions @

Conclusion

By using basic hardware classes and state transition
diagrams, the tasks of manual code input are reduced
massively. What is more, since the same state transition
diagrams used in physical hardware design can be
applied directly to this system, the operation of the
module is very easy for the user to follow. In the future,
we hope to accelerate virtual printer development by
proceeding to describe models with the logic editor.

At the present time, processing within states, and
state transition conditions, are described using C++
source code, but we could like to simplify this further for
the user, by converting to use of icons and macros.

B References

1) Mikio Takashi, Nobuhiro Matsushiro: “Printer
Simulators ... Virtual Printers” Oki Technical Review
No. 178, Vol.65 No.2, p.83-86, May 1998

Mikio Takashi, Nobuhiro Matsushiro: “Profiler type
simulator for optimizing firmware in integrated
devices”, Information Processing Society of Japan,
Proceedings of 54th National Conference (1), p.247,
248, 1997

Mikio Takashi: Oki Data Corp., NIP Div.,
Image Development Group, Team Leader

n

OKI Technical Review
April 2003/Issue 194 Vol.70 No.2

77

