超高多層基板の開発

新保 靖行

沖プリンテッドサーキット株式会社では、通信分野で 培われた多層化、特性インピーダンス制御技術を元に、他 の市場における高多層基板への展開を図ってきた。特に、 半導体テスタ基板においては、50層クラスの量産に対応 するに至った。

しかし、昨今、メモリの増加に伴うテスタ基板の配線 収容の要求が増加する一方、テスタ装置に組み込むとい う基板サイズ(板厚)の制限下で対応することが求めら れている。このような要求に対して、従来の基板構造で 対応するには、60層以上の層数が必要となり、既存の製 造技術では対応できないのが実状である。40層を超える 層数の場合、一般的なプリント基板の製造方法では対応 が難しいため、多配線を収容できる超高多層基板の開発 が急務であった。

本稿では、半導体テスタ基板市場の要求へ応えるべく 「メモリ増加に対応した半導体テスタ基板」としての80層 超高多層基板の実現に向けた技術開発について紹介する。 これを実現するためには、①製造技術の開発、②基板材 料の開発、③設計手法の開発、という視点からのアプ ローチで解決することができた。また、これらの開発技 術は、半導体テスタ基板だけではなく、更なる高速、高 密度化が進む通信市場向け基板への展開が図られる。

超高多層基板開発の必要性

プリント基板とは、一般的に電子部品を実装し、電子 回路を形成するための部品である。このプリント基板構 造を利用した特殊用途として、半導体テスタ基板が半導 体製造過程でのテスタ治具として使用されている。特に、 本稿で紹介するプローブカード(写真1)は、製造途中の ウェハ上に回路が形成された段階でテスト(ウェハテスト) を行う治具である。プローブカードの場合、基板表面に は、電子部品ではなくプローブと呼ばれる針が実装され ている。近年、プローブカードは、ウェハ径の拡大と チップの微小化に伴い、テスト回路が増大し、プローブ カードへの高密度配線収容の要求が高まっている。特に、 メモリ向けテスタでは、この傾向が顕著である。

プリント基板の全般的な市場規模に対して、半導体テ

スタ基板の市場は決して大きくはない。しかし、本稿で 紹介する超高多層基板開発の各要素技術は、プリント基 板の基幹となる技術であり、本技術を深耕することで、半 導体テスタ基板だけではなく、他の商品(基板)にも展 開が可能となる。すなわち、 1.他の商品への技術展開による市場拡大 2.技術的優位性 が期待できる。

写真1 プローブカード

超高多層基板における製造技術開発

ー般的なプリント基板が板厚1.6mmで12層程度までなのに対して、開発目標の超高多層基板では板厚6.3mmで80層になることから、以下に示すような製造技術課題を解決する必要があった。

(1) 積層技術

各層を積み重ねる時の層ずれ抑制技術が必要となる。層 ずれ抑制技術として、積層時の位置合わせに用いる基準 穴の穴明け工程を見直した。さらに、積層時のクッショ ン材を見直すことにより、最大層ずれ量150µm以上を 60µm以内に抑制することができた。そして、貫通穴と 内層隣接配線とのショートが回避できるようになった。

(2) 穴明け技術

高多層基板の場合、高精度な穴位置、穴断面形状、高

28 OKIテクニカルレビュー 2010年4月/第216号Vol.77 No.1 アスペクト比の穴明け技術が必要となる。厚板に小径 ドリルで穴明けする場合、ドリルが曲がることにより、 穴位置のずれやドリル折れが発生する。これを抑制す るために、ドリル刃長の異なる複数本を使用する穴明 け方法や、基板両面から穴明けする方法などの技術開 発を行った。この結果、穴位置精度±100μm以上だっ たものが±60μm以内に向上して、貫通穴と内層隣接配 線とのショートが回避できるようになった。

(3) メッキ技術

板厚の増大、穴径の微小化に伴い、高アスペクト比の メッキ技術が必要となる。弊社では、新規電気メッキ装 置の導入に際して、槽内電流分布をシミュレーションし、 メッキ装置を開発した。さらに、新しいメッキ液の導入 やメッキ条件の最適化により、アスペクト比30に対応 した。これにより、板厚6.3mm穴径 ↓0.20mm(アスペ クト比約32)において、電解メッキとしては業界トップ レベルのスローイングパワー(穴内メッキ厚/表面メッキ 厚の比)50%以上を達成できた。

(4) 特性インピーダンス制御技術

高速、低損失の伝送を行うためには、特性インピーダ ンス制御技術が必要となる。製造技術で制御できる主な 因子として、①配線幅、②絶縁層間厚、が挙げられ、そ れぞれ高精度に制御する必要がある。①配線幅に関しては、 配線(パターン)形成の製造装置性能によるところが大 きいが、②絶縁層間厚の制御は各種基板材料を使用するこ とから、厚みのばらつきを制御すると同時に、各材料で の仕上がり厚予想値をシミュレートし、その結果を元に 設定配線幅にフィードバックをかけて目標値になるよう にしている。弊社では、このために各種基板材料を元に 積層後の絶縁層間厚、比誘電率などをデータベース化し た自社開発のシミュレータを構築し、より高精度な特性 インピーダンス制御を実現することができた¹⁾。

弊社では、これらの製造技術を組み合わせることで、板 厚4.8mmで ϕ 0.2mmドリルを使用して0.5mmピッチBGA に対応、板厚6.3mmで ϕ 0.25mmドリルを使用して 0.65mmピッチBGAに対応、さらに板厚6.3mmで50層ク ラスの量産化を実現している(**写真2**)。

しかし、これらの製造技術を組み合わせても、従来技術の延長線上では、一般的に入手できる基板材料、設計 仕様のために限界が見えてくる。プローブカードの場合 には、板厚6.3mm、基板サイズ \$480mmという大きさの 制約に加え、配線の直流導体抵抗値の制約、特性インピー ダンス制御の制約から、実現できる層数は50層程度が限 界となる。目標とする80層の超高多層基板を実現するた めには、以上のような製造技術的視点からは不十分であ り、より高多層化できる極薄基板材料の開発、配線収容 性を高めた層数低減設計手法の開発、という新しい視点 からのアプローチが必要となった。

写真2 板厚4.8mm0.5mmピッチ 板厚6.3mm58層

超高多層基板実現のための基板材料開発

更なる高多層化を実現するためには、極薄基板材料を 使用することになるが、絶縁層間厚が薄くなることによ り、特性インピーダンス配線幅が細くなってしまう。配 線幅が細くなると、直流導体抵抗が高くなり、減衰(ロス) も大きくなる、という弊害が発生する。

この弊害を解決するためには、低誘電率材の採用が有 効である。プリント基板の材料は、FR-4呼ばれるガラス クロスとエポキシ樹脂の複合材が一般的であるが、FR-4 の比誘電率は4.7~3.8程度である。これらの材料と、一般 的な銅箔厚35µmで、直流導体抵抗と特性インピーダンス を整合するためには、線幅100µmで層間厚100µm程度 が必要となる。一部、比誘電率が3.0以下の材料(PPE樹 脂やPTFE樹脂等)も存在するが、材料コストが高く、加 工性が劣ることから、実現性が低い。たとえばFR-4系材 料で比誘電率3.5以下まで下げる改良が実現できれば、配 線幅を確保しつつ、層間厚を薄くすることができる。

そこで、低コストで既存の加工プロセスが流用できる 事をコンセプトに、FR-4をベースとした基板材料の低誘 電率化を検討した。

従来のFR-4材は、比誘電率3.5程度のエポキシ樹脂と

OKIテクニカルレビュー 2010年4月/第216号Vol.77 No.1 29 6.0程度のEガラスと呼ばれるガラスクロスの複合材となっ ている。そのため、材料としての比誘電率は、4.7~3.8 程度が限界であった。材料としての比誘電率を下げるた めには、ガラスクロスの比誘電率を下げることが必要と なる。そこで、まだ一般的ではない低誘電率ガラスクロス の採用、および樹脂とガラスクロスの比率を変更するこ とで、開発を進めている。

この低誘電率材を採用することにより、層間厚100μm 以下でも、直流導体抵抗および特性インピーダンス制御 を満足できるようになった。

超高多層基板実現のための設計手法開発

極薄基板材料を採用しても、配線幅の制約や製造装置 の制約による限界がある。そのため、別の視点から、層 数増加を抑制または削減する手法として、設計手法から の解決を試みた。

プリント基板では、構造上、同一層内で配線を交差す ることができない。配線を交差する必要がある場合には、 貫通穴を介して、他の層へ配線する必要がある。配線を うまく交差できる設計手法が開発できれば、層数増加の 抑制が図られる。

また、特性インピーダンス制御をする上で、配線層に 対して、リファレンス層となるGND層が、上下に1層ず つ必要となる。一般的なストリップ構造で配線層を増や した場合、配線層とGND層は1対1で、配線層と同数の GND層が必要となり、全体の層数に対して、配線層だけ を有効的に増やすことができない。配線層だけを有効的 に増やせる設計手法が開発できれば、相対的にGND層が 削減できる。

(1) 層数増加の抑制(交差配線の実現)

単純なストリップ構造では、GND層に挟まれる配線層 は1層のみのため、構造的に交差配線することはできない。 しかし、デュアルストリップ構造を取り入れることで、配 線層が2層となり、配線層間をビアで接続することにより、 立体交差が可能となる(図1)。ただし、ビアを含む伝送 線路の特性インピーダンス制御や伝送特性の確保が課題 となる。

そこで、弊社では、ビア径およびランド径の大きさに よる、特性インピーダンスと伝送特性の変化を確認して、 設計仕様の最適化を行った。その結果、穴径0.1mmでラ ンド径0.3mm以下の場合について、特性インピーダンス 変化を実測した結果3%以内に収まることが確認できた (図2)²。

このような微小径のビア加工は、弊社が導入している

図1 デュアルストリップ構造による交差配線模式図

図2 微小ビアによる特性インピーダンス変化 (時間領域反射法 (TDR) による実測)

写真3 レーザ加工微小径ビア

UV-YAGレーザ加工機により実現できた(写真3)。

(2) 層数の削減(複数配線構造の可能性)

弊社では、現在マイクロストリップ構造、ストリップ 構造だけではなく、デュアルストリップ構造の特性イン ピーダンス制御に対応している(図3)。この場合、クロ ストークの影響を少なくするための設計手法が必要となる。

超高多層基板を開発する上で、その層数を有効に活用 するためには、基板全体の層数に対してリファレンス層 の比率を下げ、配線層の比率をいかに上げられるかが鍵 となる。これを実現するために、弊社ではリファレンス 層間に配線層を3層組み込んだ構造の実現化を進めている。 同時にこの構造は、隣接信号との影響による特性インピー ダンス変化、クロストークなどの特性の確保が非常に難

30 OKIテクニカルレビュー 2010年4月/第216号Vol.77 No.1

しくなるという課題があるが、電気特性を確保するための設計条件の確立を、シミュレーションおよび実測から行っている(図4)³³。

このような複数配線構造を確立することにより、配線 層の相対的な増加が見込まれる。また、各層間を薄くし ても、3層の配線層の内、中心の配線層はリファレンスと なるGND層との間隔が稼げるため、特性インピーダンス の低下が防げ、線幅を太く確保することができる。

これらの相乗効果により、通常のストリップ構造と比 較して、信号層数の増加が見込まれる。

2009年のJPCAショーでは、複数配線構造を採用した 80層板の試作基板を参考出展した(**写真4**)。

今後は、複数配線構造の設計手法の確立を目指し、商 品化を進める予定である。

本稿で紹介した、各要素技術を複合することにより、 80層超高多層基板実現の可能性が見えてきた。これらの 技術は、半導体テスタ基板だけではなく、その他の商品

写真4 80層基板断面写真

にも展開することで、市場拡大を目指している。また、こ れらの技術確立による技術的優位性を狙い、受注型の営 業形態から、基板構造の提案、各種シミュレーションの 実施、設計、製造、実装までの提案型営業形態(トータ ルボードソリューション)への転換を目指している。

■参考文献

1) 金田勲 他:インピーダンスコントロール基板,電子材料, 2001年10月号, pp.96-100, 2001年

2) 八木貴弘 他:高速高密度多層プリント配線板における層数抑 制手法,第22回エレクトロニクス実装学会講演大会,17A-06, 2008年

3) 上谷純 他: 超高多層プリント配線板の信号収容性に関する一 考察, 第23回エレクトロニクス実装学会講演大会, 12B-05, 2009年

【●筆者紹介

新保靖行: Yasuyuki Shinbo, 沖プリンテッドサーキット株式会社 技術本部 商品開発部 試作開発チーム