
5

January 1998 OKI Technical Review 160 Vol. 63

Special Issue on Financial Systems: UDC 681.172.2-52 : 681.322

Software for AT-400N
Automated Teller Machine
Tetsuji NITTA*, Kouji UEDA**, Osamu NAKAZAWA***

Abstract
We developed the AT-400N automated teller machine by reconstructing embedded ATM software, which was formerly
developed with a dedicated OS / dedicated language, with a general purpose OS / general purpose language. This machine
has WOSA/XFS, which can insure the portability of Oki software to ATM platforms made by other manufacturers. To
improve productivity and maintainability, an object oriented development method was used for the middle software
layer, where ATM core processing is executed.

1. Introduction

The conventional ATM (Automated Teller Machine) has
been developed using a dedicated OS and dedicated program-
ming language. As the performance of the ATM mechanism
improves, the processing time taken per transaction is a
critical factor to differentiate the product of a manufacturer
from others, therefore a further increase in processing speed
is demanded. A dedicated OS has been the contributing factor
to maximizing the performance of the machine, however the
conventional ATM is facing the following issues.

• Along with the expansion of banking services, the
addition and change of specifications frequently occur.
The life cycle of an ATM is considerably influenced by
its customizing flexibility and extendibility of func-
tions.

• Except for some standardized specifications, such as for
the National Bank Association systems, most ATMs
conform to the original specification of the respective
bank. The critical issue is how to minimize the func-
tional differences experienced by users.

• New demands are emerging that parallel the use of
multi-vendor based information equipment, the inter-
nationalization and diversification of services, the fur-
ther automatization of work at a teller window, and
with such technological innovations as electronic com-
merce and multimedia. The information equipment
used in financial institutions, including an ATM, must
satisfy these demands. In practical terms, however, it is
difficult to meet these needs under the current dedi-
cated OS environment.1

As a result, it is inevitable that ATMs that have these
features will move into an open systems environment. This
time Oki developed software for the AT-400N Automated
Teller Machine, aiming at ATMs suitable for the open sys-
tems era. We adopted Microsoft Windows NT *1 as the

general purpose OS of this machine. For the design, we placed
importance on processing performance, and on the customiz-
ing flexibility and reuse of developed resources. We chose a
development method based on object oriented design, which
especially excels in terms of the reuse of resources and in
customizing flexibility.

This paper describes the background that led us to choose
object oriented design2 , the models to which object oriented
method was applied, and explains support of WOSA/XFS
(Windows Open Services Architecture / eXtensions for Fi-
nancial Services)3, which established an extension specifica-
tion for ATMs in Japan.

2. Basic Development Concept4

Figure 1 shows the software configuration of AT-400N. To
construct an ATM using a general purpose OS, we estab-
lished the following basic concepts.

1. Minimizing amount of application description:
Control of the ATM includes reading cards, I/O con-
trol for a cash deposit and withdrawal, control of the

* General Manager, Platform Development Department, Terminal System Division,
System Business Group

** Manager, Platform Development Department, Terminal System Division, System
Business Group

*** Senior Research Manager, Media Network Laboratory, Research and Development Group
*1. Microsoft, Windows NT are registered trademarks of Microsoft Corporation in the

USA and other countries.

Figure 1: Software configuration of ATM

Control scenario section

Component sectionAP
section

Middle software section

WOSA/XFS specification section

General purpose OS (Windows NT)

6

Software for AT-400N Automated Teller Machine

customer screen, and host transaction control. With
the application (AP), startup control for these func-
tions and macro control for result judgment process-
ing can be described. The operation for input and
output data is encapsulated in a lower layer, so that
the amount of application description can be mini-
mized.

2. Insuring customizing flexibility throughout life cycle:
To insure the universality of the interface between
middle software and the AP, software is developed
based on object oriented design.

3. Reuse of developed resources and selection of de-
scriptive language:
The AP consists of a group of components and a
control scenario section to control each component.
These are further divided into standard components,
commonly used by users, and individually custom-
ized components, so that resources can be reused.
Each component can have a hierarchical structure
and can provide a simplified interface to the control
scenario section. Each component and object can
select a language suited for its purpose. For example,
a GUI (Graphical User Interface) object consists of
an individual screen and a section to control the
sequence of the operation, such as a money transfer,
and is described in Visual Basic*2, which is superb in
describing GUIs.

4. EUC (End User Computing):
The merits of using a general purpose OS for users
are a decrease in the development period, a decrease
in development costs, and the implementation of
EUC. For the AT-400N, a GUI section and AP
control scenario section were designed considering
user access.

5. Insuring real-time capability:
The processing time required per transaction will
always be a factor to differentiate the product. The
use of a general purpose OS and object oriented
design generally tends to deteriorate the real-time
capability of the product. In this development, we
eliminated the capability deterioration factors by
prototyping and by evaluating the results.

6. Providing solutions for a multi-vendor ATM:
The ATM platform is constructed based on standard
specifications, such as Windows NT and WOSA /
XFS, so that Oki’s middle software and AP section
can be portable for ATMs made by other companies.
This allows the distribution of ATM software for
non-Oki hardware.

3. Introduction of Object Oriented
Development Method5

Object oriented development was adopted because the
critical issue was just how smoothly specification changes

could be handled during the 15 ~ 16 year life cycle of ATM
software. During this time, a generation of development
engineers may change. Critical here is whether over time
new engineers can understand previous development pro-
cedures to manage and maintain ATM software. The con-
ventional method of dividing into modules and interface
specifications, which depends on the ability and experience
of individuals, cannot satisfy this requirement. An object
oriented design approach, on the other hand, can perma-
nently implement a stable interface by modeling an inter-
face with objects having individual physical characteristics.
This concept matches well with the trend that sees object
environments expanding network wide, with ATM services
expanding accordingly.

3.1 Object Oriented Design and Real-Time
Capability

Two problems of object oriented design are the deteriora-
tion of capability and engineers. For the former, we ob-
tained a sufficient real-time capability by validating the
product in advance through prototyping, including the
general purpose OS itself. Noteworthy in this evaluation
was the subdivision of objects. As for the latter, the use of
object oriented design and C++ is a major challenge for
ATM engineers, because they have been developing ATM
using a dedicated OS and dedicated language, ASM/PLM,
for a long time. Therefore, we decided to use object ori-
ented design only for the middle software layer, where use
of object oriented design is most effective. In this way the
above problems were solved. We also taught object oriented
design primarily to engineers engaged in basic design.

3.2 Efficient AP Development
Conventional ATM software has been developed by a struc-
tured programming method. The concept of this method is
based on functions, where functions used for the AP layer
are constructed as a package function module, and the
module is used from the AP layer, as shown in Figure 2.
This method, however, has problems in the way it handles
different specifications, which depends on the financial
institution, and in productivity when an AP is developed.
This caused us to shift our attention from functions to
data, and we adopted the method shown in Figure 3. With
this method, an AP can be developed by requesting pro-
cessing to the object modeling media (e.g. a card, pass-
book) of an ATM. To produce objects we decided on the
following policy.

Figure 2: AP development based on conventional method

AP

Functional module

Hardware

Card
insert

Card
read

Content
check

Emboss
read

Emboss
registration

*2. Visual Basic is a trademark of Microsoft Corporation in the USA and other countries.

7

January 1998 OKI Technical Review 160 Vol. 63

6. Operation definition: Defines the content of process-
ing and the input and output parameters of operation
functions based on conventional ATM specifications.

3.4 Configuration of Middle Software Layer
Figure 5 shows the configuration of the middle software
layer. The AP interface layer is used by AP developers, and
consists of objects to request processing to an individual
object of the middle software. The information object
layer consists of objects that hold, manage and operate
various information handled by an ATM (checking, edit-
ing, collection, etc.), and objects that process an operation
request to IO objects. The IO object layer consists of
objects that request an operation to each IO equipment
(driver), and objects which process attention and response
from that equipment.

4. Supporting WOSA/XFS6

4.1 Implementing Portability by WOSA/XFS
ATMs in Europe and America have completely different
functional specifications than ATMs in Japan, for example,
outside Japan a deposit can be made at an ATM using an
envelope. The extension specification of WOSA/XFS for
ATMs in Japan was established by extending the specifica-
tions created by vendors in Europe and America, so that the
specification could be applied to ATMs in Japan. The aim
of this was to insure the portability of software on WOSA/
XFS. If merely improving portability is important, then a

Figure 3: AP development based on
object oriented method

AP

Card

Card reader

Hardware

Insert
Check Emboss read

Read Middle software layer

Emboss registration

1. Making the development of a transaction AP effi-
cient by capsulation:
Information management / detailed processing, such
as equipment management, is encapsulated inside
an object.

2. Component based / reuse of components:
Objects are produced according to the informa-
tion to be handled: media information, equipment
information, communication information, screen
information and customer operation information.
If customization for each financial institution is
required, then the inheritance function and func-
tion replacement mechanism by dynamic linking
are used. This decreases the number of processing
requests that an AP must issue, and makes it pos-
sible to develop the basic structure of an AP by the
following methods.
A. Time and sequence to use middle software objects

are controlled.
B. The result of control from the middle software layer

determines the next operation that is executed.

3.3 Object Oriented Analysis / Design Model
The analysis / design process that we adopted is based on
the integration of top down operations and bottom up
operations, which involved analyzing and designing ATM
software according to the OMT2 method, and rearranging
the current ATM specifications. The development of the
design document is described below using the model shown
in Figure 4.

1. Object diagram: Arranges the relationships among
objects (correlation in an operation request, data
exchange, etc.).

2. Transition diagram: Arranges the behavior of objects
based on the major events to be processed by each
object.

3. Transition table: Arranges the transition diagram in a
table format. The behavior of objects for all events,
including abnormality processing, is arranged here.

4. Fence chart (timing chart): Arranges the role of each
object and interface among objects in a major pro-
cessing flow.

5. Class definition: Defines an attribute to be held and
managed as a class, the relationship with other ob-
jects, and operations (and internal processing) to be
accepted as a processing request.

Figure 4: Object oriented analysis & design model

Fence chart

Object diagram Class definition

Operation definition

State transition

Transition diagram

Transition table

Implement process

Figure 5: Configuration of middle software

AP interface

Information object layer

Message communication

Media information customer operation information
common information on equipment

communication information screen information

Operation request/response

IO object layer
Media equipment common equipment

Command issue/response/attention

Driver layer
IO equipment control communication control CRT etc.

8

Software for AT-400N Automated Teller Machine

rigid standardization (less range of selections) is best. How-
ever, ATMs in Japan have special features, such as the
method of circulating coins and paper currency, and these
features are the result of the efforts of respective vendors to
differentiate their product from others. Therefore, the
specification of WOSA/XFS for ATMs in Japan had to be
defined such that respective vendors could implement their
own features within the specification, not just by adding
functions to the original specification. To meet these con-
flicting demands, special functions depending on the ven-
dor were defined as “selectable” (this function is called
“Capability”), so that portability could still be insured.

4.2 Support of WOSA/XFS for Middle Software
The concept of supporting WOSA/XFS for AT-400N and
the results are as follows.

• Assigning different roles to AP section and middle
software section:
Functions that differ, depending on the vendor, are
encapsulated in the middle software layer as much as
possible, except for functions where the physical
sequence is critical to control the movement of two or
more media (i.e. ID card and money transfer card)
due to the mechanism of the hardware.

• Supporting standard “Capabilities”:
Since the WOSA/XFS specification was recently es-
tablished, supporting all “Capabilities” is impracti-
cal. Only the standard “Capabilities” are supported.

• Matching objects in middle software layer and WOSA/
XFS object class:
The WOSA/XFS specification was established after
we completed the design of the middle software. Still,
the object class defined for the middle software sec-
tion matched well with the class of the control target
equipment of WOSA/XFS. Therefore, we did not
have to perform any major modifications on the
middle software to support WOSA/XFS.

5. Future Development Plans

The major purpose of the development this time was to
shift conventional operations to a general purpose OS
environment. In the future, we will continue development
as follows so that advanced services provided by a general
purpose OS can be applied.

1. Organizing development support environment for EUC:
We will provide visual languages to describe the
control scenario of AP. For this, a test environment
must also be provided to users.

2. Use of intranet (Internet):
Since automation and 24 hour operation for teller
window services cause problems on how to distribute
software programs which increases in number. In

conventional operations, a system to download and to
switch software according to the transaction service is
required. However, software for services rarely re-
quested or for services that do not require a quick
response need not be installed on a local disk. A
dynamic download mechanism, such as HTML (Hyper
Text Markup Language), will be more practical for
such software. We are planning to access to an intranet
(Internet) and to prepare an execution environment
for this purpose.

3. Defacto standardization for higher layer API:
To implement true EUC on an AP layer, not only an
OS and development language environment but also
a higher interface provided by the middle software
must be standardized. It takes time to solve this
problem, but discussions will probably begin among
users who use multi-media ATMs.

6. Conclusion

We developed software for the AT-400N Automated
Teller Machine, aiming at an ATM suitable for the open
systems era. Through this development we confirmed
many achievements to provide solutions to users, which
included the portability of ATM software and the imple-
mentation of EUC. We also confronted many new prob-
lems, a kind of baptism of fire in entering the open
systems era. For example, issues on licensing costs for
software to be installed, insuring quality (accenting
performance and avoiding bugs), updating versions, and
security problems. Formidable experiences like these
will help us in our future work.

7. References

1. Yokoyama: AT-400 series Automated Teller Machine,
Oki Kenkyu Kaihatsu, 168, 62, 4, (1995): 7~14.

2. J. Rumbaugh: Object-Oriented Modeling and De-
sign, Prentice Hall, (1992).

3. Japan WOSA/XFS Council, Working Group, WOSA/
XFS Programmers Reference, (1996).

4. Tetsuji Nitta et al: Development of software for
banking equipment based on object oriented method—
Development strategy / outline - Proc. of 53rd Con-
vention IPS, 4D-10, (1996).

5. Nakazawa et al: Development of software for banking
equipment based on object oriented method - Con-
figuration of middle software - Proc. of 53rd Conven-
tion IPS, 4D-11, (1996).

6. Ueda et al: Development of software for banking
equipment based on object oriented method - Sup-
port of WOSA standardization, Proc. of 53rd Con-
vention IPS, 4D-12, (1996).

