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Against the backdrop of labor shortage brought on 
by the decrease in the labor force, the move to automate 
production with robots is becoming increasingly active. 
Even OKI Data has been working on “automated work” 
of production through the development of an automated 
production system that utilizes in-house manufactured 
automatic devices and robots. However, with a conventional 
automatic production system, the engineer would need to 
create action sequences for the robots by programming 
sequential motions. If multiple products simultaneously 
flow down a production line that handles processes 
involving several automatic devices, it would be necessary 
for the engineers to specify every possible combination of 
processes. Since this would greatly increase the burden 
on the engineers, it was not realistic.

To solve such a problem, a virtual factory imitating a 
real factory was built on a computer. The virtual factory 
was used to develop a production system with “automated 
thinking” that will self-learn the robot’s most optimal action 
sequences based on every possible combination of 
processes. The developed system was then implemented 
on an actual production line, and as a result, the burden 
on the engineers were significantly reduced. This article 
introduces the new production system that utilizes robot 
and AI.

Issues with Conventional 
Automatic Production System

Figure 1 shows a schematic of an automated production 
process at a real factory where the new production 
system was implemented. It consists of one robot and 
four individual automatic devices that are responsible for 
forming, assembling, fixing, and characteristic inspection. 
However, in the assembly process, the robot partially 
handles production. Transfers between processes are 
performed by the one robot. The individual automatic 
devices have, at a maximum, five carrier positions. The 
carrier is a jig capable of securely holding multiple products 
flowing along the process. Production of one batch of 
products is completed when the carrier at the entrance of 
the process moves to the exit after passing through all the 

production processes. As Figure 1 shows, since one robot 
is responsible for transferring carriers to the four automatic 
devices, there are always multiple action choices when 
viewed from the robot.

Figure 1. Schematic of an Automated Production Process
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 The number of actions that an engineer should teach 
the robot is considered using Figure 2. There are eighty 
carrier positions at the entrance of the process and five at 
the forming device. The arrows connecting each device 
indicate the carrier transfer actions of the robot. From 
the entrance position “1,” the carrier can be transferred 
to one of the five positions, “1” thru “5,” of the forming 
device. Since there are eighty positions at the entrance, 
the number of robot actions corresponding to the carrier 
transfer between the entrance and the forming device is 
400 actions. In a similar matter, the total number of robot 
actions at the entire real factory is 835.

In actuality, the robot needs to select the optimal 
action from among the 835 patterns according to the ever-
changing situation of the carrier position at that time. Each 
position has two states of whether transfer is possible or 
not. For example, if a process reaches completion and 
there is no carrier in the position of the subsequent process, 
it is a transferable state. As can be seen in Figure 2, since 
the total number of positions in this new production system 
is 176, there are 2176 position states.

Therefore, the engineer needs to specify an optimal 
action sequence for the robot from the 2176 × 835 patterns 
according to the situation. Furthermore, it is necessary to 
consider the actions for cases of error stops and recoveries. 
Thus, it is difficult for the engineer to realize “automated 
work” through the specification of all possible actions.
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Figure 2. Carrier Positions in an Automated Production Process 
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Configuration of New Production System
 

The configuration of the new production system is 
described using Figure 3. The new production system 
consists of a real factory, a virtual factory, a decision 
unit and a process management server (OPTAS*1)). The 
“automated thinking” of the virtual factory drastically 
reduces the burden on the engineers that arises when 
trying to achieve “automated work.” 

Figure 3. Schematic of Production System with Robot and AI 
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As was previously shown in Figure 1, the real factory 
consists of a robot and multiple individual automatic 
devices. Production at each process is carried out by an 
individual automatic device. The robot handles part of the 
assembly work and the transfer between processes. The 
result is an achievement of multiple unmanned processes. 
The robot that was used is NEXTAGE1), a humanoid next 
generation industrial robot manufactured by KAWADA 
ROBOTICS.

Figure 4 shows an example system configuration of 
an individual automatic device. The required motions are 
achieved with the use of motors and drive shafts. All the 
individual automatic devices are equipped with a camera 
to enable various functions such as image linked motion 
control, product alignment, inspection, differentiation 
and recognition. The devices can also be equipped with 
measuring instruments and sensors to perform other 

inspections as necessary. All these elements are controlled 
using a control PC, which is connected to the in-house 
network for communication with OPTAS and the decision 
unit. Each process was efficiently automated through 
the in-house development of these individual automatic 
devices.

Figure 4. System Configuration of Individual Automatic Device
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The decision unit gathers the situational status such 
as carrier position from the real factory and gives out 
optimum action orders according to the situation, thereby 
comprehensively controlling the entire factory.

A virtual factory is a computer environment for 
simulating the work of a real factory and realizes various 
combinations of production processes with software, 
which otherwise would require numerous engineers and 
time to perform. Thus, it enables the robot’s motions to be 
learned in a short period. Feeding back data from the real 
factory to the virtual factory brings learning closer to reality.

In the new production system, position information 
obtained at the real factory from sensors and cameras 
other than those equipped on the robot can be fed back 
to the robot as an external variable. Referencing this 
external variable, the position coordinates of the basic 
motion taught to the robot can be changed according to 
the current situation. Therefore, the 835 actions can be 
reproduced with the teaching of five basic actions, and 
the engineers’ burden in teaching the robot’s motion is 
drastically reduced.

However, there are still 2176 different situations for 
the carrier position. Through “automated thinking,” the 
optimum actions corresponding to the massive number of 
these combinations are learned automatically at the virtual 
factory, thus allowing the realization of “automated work.” 

“Automated Thinking”: Action Value 
Function and Reinforcement Learning

For the decision unit to issue an optimum action 
command for a situation, it is sufficient if one optimum 

*1) OPTAS: OKI data Production control and Total Analysis System
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Here, α(0≤α≤1) is the learning rate, and γ(0≤γ≤1) is the 
discount rate.

For the (t+1)th action selection, the ε-Greedy method 
was used. An action is randomly selected with a certain 
probability ε, and for others, according to 

From all the corresponding actions A, the action with 
the highest action value is selected.

Repeating this Q-learning for the desired number 
of batches optimizes the action value function Q (S, A), 
and “Which action is optimal for an arbitrary situation?” is 
automatically learned.

“Automated Thinking”: Role 
of Virtual Factory

In a real world factory, it would take more than two years 
to learn the 1000 batches necessary for optimization, but 
with the virtual factory, off-line Q-learning will enable the 
same 1000 batches to be learned in five minutes.

In addition to the learning and simulation functions, a 
function was developed to link the real and virtual factories 
in real-time when the real factory is in operation. With this 
function, the operating status can be displayed in real 
time. When an error occurs, the condition, location and 
handling method are also displayed to allow error isolation 
and recovery work to be performed by the operator alone.

Initial parameters of the virtual factory are set manually. 
Depending on the state of the initial parameters, the virtual 
factory optimization may not be sufficient. In the new 
production system, actual operation data accumulated in 
OPTAS can be fed back to the virtual factory and used for 
learning. By repeating this process, the virtual factory’s 
degree of optimization can be improved. When there are 
no changes in processing time, etc. of each process, it 
has been confirmed that by repeating the learn ⇒ actual 
operation cycle two or three times will bring the virtual 
factory to a near optimal state. If there are changes in 
processing time, etc. of each process, learning for the 
new situation is performed, and the virtual factory can be 
re-optimized.

Effectiveness of New Production System

The effectiveness of the new production system is 
shown in the great workload reduction that the “automated 
thinking” brings for the engineers when they “automate 
work.”

action corresponding to the situation can be selected from 
the multiple action options. In the new production system, 
the action value function shown as an example in Table 1 
served as an indicator for the decision basis.

The action value function Q (S, A) is the action values 
represented numerically for each of the multiple action 
options A1 thru Am available for the carrier position 
situation Sn. The optimal action for a situation is selected 
when the action with the highest action value is selected. 
As mentioned previously, the number of actions Am is 835 
and the number of situations Sn is 2176.

Table 1. Example of Action Value Function Q (S,A)

Situations
Actions A1         A2  Am

S1 3.0 1.0 0.5

S2 2.0 8.0 10.0

Sn 3.5 1.0 -6.0

835 Actions
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Selection of an optimal action according to the situation 
requires optimization of the action value function Q (S, A). In 
the new production system, automatic acquisition of action 
value function was carried out using Q-learning2), which is a 
type of reinforcement learning (refer to glossary)2).

Productivity is what should be optimized in a production 
system. In this case, it was decided that each action value 
Q (St’ Ai) in Table 1 would be optimized to shorten the total 
processing time for a certain batch. First, transfer actions 
for one batch is performed, and the time-series data of the 
processing time Tt required for each action and reward Rt+1 
that corresponds to the result of the situation transition 
due to each action are saved. Here, the reward Rt+1 is the 
reciprocal of the action time, and Rt+1=p/Tt. p is a coefficient.

Next, after the action completion of one batch, the total 
processing time taken for the batch processing is calculated, 
and reward is recalculated. This total batch processing 
time is compared with the total batch processing time up to 
the previous time. If the latest total batch processing time 
is longer, each action reward Rt+1 is multiplied by -1, and 
conversely, if it is shorter, the recalculated reward value 
is used as is.

Using the recalculated reward Rt+1, all the action values 
Qt (St’ Ai) for one batch are updated. The updates are 
performed based on the following equation while tracing 
the action value functions of one batch in chronological 
order.
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The virtual factory of the new production system can 
be constructed to model a factory where the same robot 
handles part of the production line for another product. 
Accordingly, it is also possible to cope with automation of 
complicated high-mix low-volume production lines in which 
different products are mixed.

The decision unit of the new production system 
instructs the robot with optimal actions. However, the 
optimal actions can be directed not only to robots but also 
to “humans.”

In this way, the new production system can handle 
various processes, and since productivity improvements 
can be expected with fewer engineer man-hours, 
development is continuing for lateral deployment within 
the company. 
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Since the action value function is automatically 
generated through learning at the virtual factory, it becomes 
unnecessary to implement the action sequences for all the 
number of batches on the robot side as with a conventional 
case. Furthermore, there was a 15% productivity 
improvement with the automatically generated sequences 
when compared against human-generated sequences 
(when maximum number is transferred to the carrier 
positions of individual automatic devices). Therefore, 
it also eliminates the technical man-hours needed for 
optimizing the sequences. Moreover, at the study stage it 
was assumed that the fixing and inspection devices would 
each have five carrier positions as shown in Figure 2, but 
after the learning, it was found that one position each was 
optimal. As a result, the fixing and inspection devices were 
successfully downsized, and it was possible to suppress 
the cost of facility investment.

With the new production system, the engineers’ 
workload for building a production system using a robot 
and individual automatic devices was reduced to 1/10 of 
a conventional system. Photo 1 shows the implemented 
production system in operation.

Photo 1. Implemented Production System

Future Development

In the production line that was implemented, the 
operation rates of individual automatic devices are high, 
but the operation rate of the robot is only about 30%. This 
is because the robot is used in a fixed position, and it can 
only handle individual automatic devices that are within 
range of the robot’s motions. If the robot’s position can be 
moved such as with an unmanned carrier, a single robot 
will be able to handle about three times the process and 
further improve efficiency.

Reinforcement learning
Type of machine learning using a computer. In order to reach 
a more correct result for a problem to be solved, learning is 
conducted on a trial-and-error basis to maximize the 
self-obtained reward. 

Glossary


