
56 OKI Technical Review
January 2003/Issue 193 Vol.70 No.1

Developing and Evaluating Web
Application Systems Based on
Automated Program Generation Toolkit

Makoto Yoshida Mitsunori Sakamoto

Recent advancements in IT technology are fueling
corporate software development efforts to provide high
quality, low cost products in an ever-shorter period of
time1). To help achieve this goal, development techniques
such as standard architecture2), framework 3) 4), and
design pattern 3) 4) as well as Component-Based
Software Engineering (CBSE) 5) 6) 7) 8) development
methods are receiving increasing attention. Through use
of these technologies and methods, it is expected that
low cost, high quality applications can be achieved.

However, in order to utilize these technologies and
methods effectively, well-defined modular approach
enabled by superior overall application design is
required 9). At the same time, it is necessary to address
the trade-off between system flexibility and complexity.
Flexible solutions increase complexity and raise the cost
of implementation. Our aim is to supplement these trade-
offs.

We have developed a toolkit for automated program
generation, based on design patterns, and have applied
it to an actual Web application development
project 10) 11) 12) 13). Using this toolkit realizes significantly
higher productivity through the representation of software
development knowledge and know-hows in the form of
design patterns.

The toolkit runs on multiple architectures (ASP/COM
architecture 10) 13) and JSP/EJB architecture 11) and cost
evaluations were performed on each architecture 11) 12).
This article surveys toolkit methodology and cost
efficiencies. Table 1 shows the files created by this
toolkit.

Table. 1 Table 1 Files created by the toolkit

Software Development Methodology

A traditional software development process consists
of analysis, design, implementation, and testing
processes. On the other hand, in a development
approach based on components ("componentware"),
these processes are modified as follows: analysis,
component-oriented design, component composition,
and testing processes 5) 14). The IBM San Francisco
Project is an example of componentware
development 4) 6). The advantages of component-based

development include reduced development costs and
high quality (reliability) achieved through component
reuse. However, there are disadvantages as well.
• New methodology has not been well-establishied 15).
• New education for software developers is necessary.
• As the number of components increase, the

integration of components becomes more difficult and
the maintenance costs increase.
We have developed an automated program

generation toolkit, which leverages the advantages of
component-based development, while following
traditional software development styles.

The following are our guidelines for developing the
toolkit. A comparison between a traditional software
development process 14) and the authors' development
method is shown in Fig. 1.

Development methodology guidelines:
• Reuse components, but also follow a traditional

software developing methodology. Develop a method
to integrate the advantages of component
development into the traditional development
process.

• Encapsulate design patterns that the experienced
developers accumulated into the toolkit and provide
them to developers with symbolic user interfaces.

• Design each components to be simple and general.
The number of components should be minimized.

Presentation layer Business logic layer

Java architecture JSP files Java files (EJB)

ASP/COM architecture ASP files C++ Source code (COM)

Special issue on devices

OKI Technical Review 57
January 2003/Issue 193 Vol.70 No.1

Fig. 1 (a) Componentware development process

Fig. 1 (b) Software development process using
automated program generation tools

Fig. 2 Software architecture

Software Architecture

Generative programming is a method to automatically
select and assemble components as needed. Some

consider it a change from the traditional software
development paradigm 16). However, this method is only
effective when it is specialized within an application
domain. We first built an automated program generation
toolkit that is not restricted to the specific application
domain and then customized the toolkit as necessary
based on effectiveness testing.

The toolkit software architecture is shown in Fig. 2.
The software architecture consists of application domain,
user interfaces, and application frameworks. User
interfaces consist of common interfaces and special
interfaces. The common interfaces do not depend upon
the application domain. In a typical development, only
common interfaces are used. For some development
projects, implementation cost may not differ significantly
from the case where ordinary manual coding is employed
because automated generation results in wasteful code
when merely using common interfaces. In the present
case, the toolkit is customized for the application domain
and special interfaces are established. However as
described later, according to our evaluation results, it was
verified that even a universal toolkit using only common
interfaces is very effective.

We have built common application frameworks for the
toolkit by classifying general functions of Web application
programs into the following elements:
• Elements that can be generalized as components,

and reused as class libraries.
• Elements that cannot be generalized or reused as

classes, but which have very similar code patterns
(such as repeating code).

• Elements that can be used only for the specific
application.

Fig. 3 Application framework

A common application framework, as shown in Figure
3, is based on the three classifications above and
consists of three layers: class library layer, design pattern
layer and application-specific layer. Similar patterns are
generalized as design templates and are integrated into
the design pattern layer. This layer is the core of the
toolkit, and all developer's know-hows resides in here.

Traditional
approach

Analysis Design Implementation Testing

Analysis /component-
based design

Component
composition Checking

Component
warehouse

Traditional
approach

Analysis Design Implementation Testing

Automatic generationDesignAnalysis Testing

Component
warehouse

Common application frameworks

Application
domain

Application domain

User interfaces Common
interfaces

Special
interfaces

Special
interfaces

Application
domain

Application
domain

Special frameworks

Design pattern layer (similar patterns)

Application-specific layer

Reusable
class library

Design
template

Application-
specific

code

Application-
specific

code

Design
template

Design
template

Reusable
class library

Reusable
class library

Class library layer

58 OKI Technical Review
January 2003/Issue 193 Vol.70 No.1

The toolkit represents similar code patterns as simple
character strings, and it enables automated code
generation by specifying that character strings as an
application information into the toolkit. Application-
specific sections need to be supplemented manually after
generating the programs. However, when the amount of
source code modifications is over 25% of the total, it is
necessary to customize the toolkit to accommodate to
the specific application domain 7) 17).

Automated Program Generation Toolkit

The toolkit consists of basic libraries and various
tools. The tools include a presentation tool to generate
JSP/ASP source code, a logic tool to generate EJB/COM
source code, and a database definition script generation
tool. This toolkit is for building Web applications, so the
presentation layer and business logic layer are separated
to keep them independent. Steps for generating source
code using the toolkit are shown below.

(1) Input the application design specification to the
toolkit. Specifications are the presentation definition,
the business logic definition, and the database
definition; those are the outputs from the design
process in the software development processes
(detail described in section 3.2 and 3.3).

(2) At the first steps, the toolkit automatically picks up
functions from the application specifications.

(3) At the second steps, several design patterns in the
code pattern layer are extracted automatically.

(4) At the third steps, according to the design pattern
extracted, the corresponding basic libraries are called
automatically, and source codes are assembled.

Design of the logic tool interface substantially affects
the ratio of automated logic program generation. We
have developed the universal logic tool interface shown
in Fig. 5. The above information is entered on a
spreadsheet and input to the toolkit. Design templates
are extracted based on logic names and command
names entered through the logic interface. At the same
time, a part of the source code is generated and
integrated based on parameter and supplemental
information. Then source code is automatically
generated depending upon the platform archtectures.

Fig. 6 shows an interactive presentation tool interface
developed to generate presentation layer code.

The interactive presentation tool interface consists of
layout information for screen display and control
information to control business logic for the server site.
Based on the input information, HTML logic control code,
input data checking code, send/receive processing code,
logic call code, etc. are generated automatically, as well
as JSP/ASP code.

Fig. 4 Software development process

Database table
definitions

Screen
definitions

Logic definitions

(Form definitions,
 etc.)

Database
script files

ASP programs
JSP programs

C++ programs
Java programs

Design specifications Automated program
generation toolkit

Automatically generated
application programs

Modify

Build

Execute

Database tools

Presentation tools

Logic tools

Special issue on devices

OKI Technical Review 59
January 2003/Issue 193 Vol.70 No.1

Fig. 5 Example of logical definitions

Fig. 6 Presentation user interface

DocType Bean(COM)I/F_version1.0
package=mybean
Class name
Function
Method name

test
Sample data reference
getSample
Variables Code
Return codes

Template output
Supplement
SQL(fmt) select s

from Sample
where Code<

Column ID Table name Column name
s Sample Code

Item name 1
Item name 2
Item name 3
Status

Interface definitions

Logic definitions

Code Variables
Variable name
Code
item 1
item 2
item 3
state Variables

Code

Code
item 1
item 2
item 3
state Status

item 2
item 3

Code
item 1

Convert (checked),

Variables

Return codes

test
Modify sample data
updateSample

Exit
Class name
Function
Method name

Template output
Supplement
SQL(fmt) update Sample

Item name 1
Item name 2
Item name 3
Status

where Code=

item 1 Variables
item 2 Variables
item 3 Variables
state Variables
Code Variables

Characters
Characters
Characters

Table name Column name d Type/size

Logic user interface example

Column ID
Exit

Interface definition

Logic definitions

class name

method name

column definition

60 OKI Technical Review
January 2003/Issue 193 Vol.70 No.1

Evaluation of the Automated Program
Generation Toolkit

Using the toolkit, we built the same systems for both
ASP/COM architecture and JSP/EJB architecture and
compared the volume of generated code for each. Table
2 shows a comparison of the resulting number of source
code steps. 100% of the source code for the systems
was generated automatically by the toolkit. All differences
between the architectures are resolved within the toolkit,
so there is no difference in terms of input information.
From the results shown in Table 2, it was confirmed that
there is little difference: any differences between the
architectures have been resolved within the toolkit.

Below is presented a cost analysis based on program
code results generated on the ASP/COM architecture.
Considering that differences between the two resulting
systems are minor as discussed above, this analysis
could similarly be performed for either architecture.

Table. 2 Code comparison by architecture

Table. 3 shows the results of automated program
generation when applying this tool to various business
applications. Some fields of application are: accepting/
placing orders, CRM (Customer Relations Management),
merchandise distribution, and sales management. Table.
3 shows that the average ratio of automated generation
by the toolkit is 86.2%. This means that the bulk of the
programs can be generated automatically. Further, the
average ratio of automated generation by the
presentation tool is 90.1%, and the average ratio by the
logic tool is 72.7%. The average ratio of automated
generation by the presentation tool is much higher than
the average ratio for the logic tool. These rates may vary
depending on characteristics of the business. However,
for the selected projects the difference can be accounted
for by the fact that the presentation layer (screens) have
general properties, while the logic layer consists of more
business-specific portions.

In Fig. 7, implementation costs when using the toolkit
are shown, based on a Selby curve. The Selby curve is
well known to help understand software reuse costs. It is
said that reuse requiring 25% modification of existing
source code is equivalent to 55% of the cost of rewriting
that code from scratch 7) 17). Fig. 7 also shows the source
code modification ratio, described above, plotted on the
Selby curve. It is clear that, for three of the four projects,
implementation costs can be reduced by more than 60%.

Table. 3 Ratio of automated program generation

(a) Presentation tool

(b) Logic tool

(c) Presentation & logic

Presentation
layer

Logic layer Total

ASP/COM
architecture

993 313 1306

JSP/EJB archi-
tecture

1027 284 1311

- CRM system

Total

Presentation tool

Application type Source code steps Modified code steps Ratio of automated program generation

Distributed business

- Ordering system

- Sales manag-ment system

- Returned products processing system

12,617

49,025

13,300

19,418

3,690

1,036

4,829

40

1,960

1,793

91.8%

90.1%

99.7%

89.9%

51.4%

Financial business

- CRM system

Total

Logic tool

Application type Source code steps Modified code steps Ratio of automated program generation

Distributed business

- Ordering system

- Sales manage-ment system

- Returned products processing system

1,277

14,504

5,800

3,645

3,782

63

3,965

88

1,793

2,021

95.0%

72.7%

98.5%

50.8%

46.6%

Financial business

- CRM system

Total

Logic and presentation tool

Application type Source code steps Modified code steps Ratio of automated program generation

Distributed business

- Ordering system

- Sales manage-ment system

- Returned products processing system

13,894

63,529

19,100

23,063

7,472

1,099

8,794

128

3,753

3,814

92.1%

86.2%

99.3%

83.7%

49.0%

Financial business

Special issue on devices

OKI Technical Review 61
January 2003/Issue 193 Vol.70 No.1

Fig. 7 Software implementation costs

Table. 4 shows calculated software development
costs (for the processes of analysis through testing)

based on the Selby cost curve. Costs for implementation
and testing are calculated using the following formulae.

Implementation cost = Csi x Ci
Testing cost = Cst x Ct
Ct = (10 x Ci + 3) / 13

Where Csi and Cst are standard software
development costs (Csi: Costs of standard
implementation and Cst: Cost of standard testing),
recommended by reference document 1). Ci represents
the implementation cost ratio (%) derived from the Selby
cost curve based on the data in the former section.
Testing costs depend on the number of test items. Tests
consist of program tests (unit tests) and system tests
(integration tests). Based on our experience, we have
set the ratio between unit tests and integration tests at
10:3. Ct is calculated here considering that the number of
test items for unit tests is proportional to the ratio of
manual to automated coding. Table. 4 shows that using
this toolkit it is possible to reduce cost of software
development by 43%.

Table. 5 shows software life cycle cost effectiveness
using total costs from analysis through maintenance.

Table. 4 Software development costs

Table. 5 Table 5 Software life cycle costs

As was done for software development costs, the
standard cost models adopted are taken from
recommendations in reference 1). Development costs
and rework costs in the software life cycle are
represented by the following formulae. A standard value
is employed for the cost of knowledge recovery.

Development cost = Csd x Ci
Rework cost = Csb x C
C = (Ci -10%) x 0.33

Where Csd and Csb are standard software
development costs (Csd: Cost for software development
and Csb: Cost for maintenance and rework), which are
recommended by reference 1). The cost of rework is 1/3

0% 25% 75% 100%
0%

55%

70%

100%

Source code modification ratio

Cost

Overall system code modification ratio

Presentation source code modification ratio
Logic source code modification ratio

Selby curve

Software development costs Analysis Design Implementa-tion*a

*a :Calculated from the ratio of automated program generation on the Selby curve

Testing*b

*b :Calculated based on the number of test items

Total costs Reduced costs

Standard (1) 18 19 34 29 100 0

System 18 19 10.2 9.8 57 43

Presentation 18 19 6.8 8.9 52.7 47.3

Logic 18 19 18.7 12.8 68.5 31.5

Software development &
maintenance costs Development costs*a

*a :Development cost = (Standard development cost) x (Ratio of reduction through use of the toolkit)

Rework costs*b

*b :Rework cost = (Standard rework cost) x (Ratio of reduction through use of the toolkit - 10%) x 0.33

Knowledge recovery
costs

Total costs Reduced costs

Standard (1) 41 31 28 100 0

System 23.4 15.2 28 66.6 33.4

Presentation 21.7 14.3 28 64 36

Logic 28.1 18 28 74.1 25.9

62 OKI Technical Review
January 2003/Issue 193 Vol.70 No.1

because of program reuse 1). Table. 5 shows that using
this toolkit can reduce software life cycle costs by 33.4%.

Table. 6 and Fig. 8 summarize the cost reduction
effect. The average ratio of automated program
generation by the toolkit was 86%. It is thus
demonstrated that, using this automated generation
method, it is possible to reduce implementation cost by
70%, software development cost by 43%, and software
life cycle cost by 33%. Compared to traditional methods,
this approach offers the possibility of significant cost
savings.

Table. 6 Cost reduction effectiveness

Conclusion
In this paper, we introduced a toolkit to automatically

generate programs for the presentation and logic layers
of Web application systems. We described the
development methodology, approach, and cost
effectiveness of the toolkit. By applying the toolkit to
some actual projects, we verified that it is possible to
significantly reduce costs compared to traditional
methods. Although this article focuses mainly on using
the toolkit for implementation, the toolkit also offers
substantial effectiveness during analysis and design
processes. It has been observed to significantly reduce
rework required after implementation. Additionally, it is
effective to facilitate the accumulation of expertise using
design patterns and programming patterns where that
expertise is otherwise difficult to gather and share.

Web services using component distribution still have
many problems. However, the authors' approach can be
considered an effective approach for Web services.

Thanks to the pervasiveness of J2EE and MVC
architecture 2), it won't be long until the component
distribution approach becomes widespread. In addition to
component distribution through making interfaces more
open, integration approaches such as that using this
toolkit will also be important. Providing user interfaces
and frameworks and achieving Web services with an
appropriate level of service granularity are challenges for
the future.

Fig. 8 Cost reduction effect

Reduced costs (%) System Presentation Logic

Implementation 70 80 45

Software development 43 47 32

Software life cycle 33 36 26

0% 10% 20% 30% 40% 50%

50%

40%

30%

20%

10%

0%

100%

80%

60%

40%

20%

0%

Implementation:
(%) Reduced costs

Software development:
(%) Reduced costs

Software life cycle:
(%) Reduced costs

Implementation:
Reduced 70%

Software life cycle:
Reduced 33%

Software development:
reduced 43%

Special issue on devices

OKI Technical Review 63
January 2003/Issue 193 Vol.70 No.1

References
1) Robert B.GradyÅF Successful Software Process

Improvement, Prentice-Hall, 1997.
2) Yunoura, et. al.: "Web System Development

Techniques using EJB Components", Soft Research
Center, March 2002

3) Suzuki, Tanaka, Nagase, Matsuda: "Reviewing
Software Patterns - From Origin of Patterns to Future
Development", JUSE Press, June 2000

4) R.E. Johnson, Nakamura, Nakayama, Yoshida:
"Patterns and Frameworks", Kyoritsu Shuppan, June
1999

5) M.Aoyama: New Age of Software Development How
Component-Based Software Engineering Changes
the Way of Software Development, 1988 International
Workshop on Component-Based Software
Engineering, Kyoto, Japan, 4. 1998

6) IBM San FranciscoÅFConcepts and Facilities, IBM
Corporation, 1977 Project, Software Development,
Vol.6, No.2, 2. 1998

7) R.Selby: Empirically Analyzing Software Reuse in a
Production Environment, Software Reuse-Emerging
Technology, editor Will Tracz, IEEE Computer Society
Press, New York, pp. 176-189, 1988

8) D.R.Musser, et al, Algorithm-Oriented Generic
Libraries, HP Laboratories Technical Report, HPL-94-
13, 1994

9) Shibata, Gemba, Kodama: "Evolution of Products
Architecture", Hakuto Shobo, June 2002

10)M. Yoshida, M. Sakamoto: Experimental Results of
Pattern-Based Automatic Program Generator,
Proceedings of the IEEE SAINT 2002, Nara, Japan,
Jan-Feb. 2002

11) M. Yoshida, M. Sakamoto: Experimental Knowledge-
Based Automatic Program Generator, Networks
2002: Joint International Conference: IEEE ICWHN
2002 and ICN 2002, Atlanta, USA, 8. 2002

12)M.Yoshida, M.Sakamoto: Time and Cost Evaluation
of Automatic Program Generator in a Web-Based
Application Environment, 2nd ACIS Annual
International Conference on Computer and
Information Science, Seoul, Korea, 8. 2002

13)Sakamoto, Iwane, Yoshida: "Web Application
Development using Automated Program Generation
Tools", 2002 IEICE General Conference, SA-6-5.

14)Aoyama, Chusho, Kouyama: "Componentware,"
Kyoritsu Shuppan, August 1998

15)K. Bergner, A. Rausch, M. Sihling: Componentware -
The Big Picture, 1998 International Workshop on
Component-Based Software Engineering, Kyoto,
Japan, 4. 1998

16)K. Czarnecki, U.W. Eisenecker: Components and
Generative Programming, ESEC/FSE Åf99,Toulouse,
France, 9. 1999

17)D. Batory: Intelligent Components and Software
Generators, Technical Report 97-06, Dept. of
Computer Sciences, Univ. of Texas at Austin, 2. 1997

Authors
Makoto Yoshida: Oki Software Co., Ltd. Chugoku
Regional Office, HDS Planning Office, General Manager
Mitsunori Sakamoto: Oki Software Co., Ltd. Chugoku
Regional Office, HDS Planning Office, Development
Leader

